Pegem.Net



../resim/eResim/479435.jpg
Application of Multivariate Adaptive Regression Splines in Agricultural Sciences through R Software

Editör(ler) :
Yazar(lar) : Ecevit Eyduran, Melekşen Akın  Sadiye Peral Eyduran  
Yayınevi: Nobel Bilimsel Eserler

9,72 % 19 indirim
12,00

Sepete At
Yaklaşık 3 iş günü içerisinde tedarik edilir.
Kargo Koşulları: Kredi kartı/havale/eft ile siparişlerde; Kargo ücreti 7,5 ' dir. 75 üzerinde siparişlerde kargo ÜCRETSİZDİR.


Regresyon ve sınıflandırma problemlerinde veri madenciliği algoritmalarının kullanımı, ele alınan değişkenler arasındaki ilişkilerin tanımlanması açısından araştırıcılara değerli bilgiler sunmaktadır. Regresyon problemleri kapsamında, CART (Classification and Regression Tree), CHAID (Chi-Square Automatic Interaction Detector), Exhaustive CHAID (Exhaustive Chi-Square Automatic Interaction Detector) , MLP (Multilayer Perceptron) ve RBF (Radial Basis Function) veri madenciliği algoritmalarının tarım bilimlerine uygulanması son yıllarda önem kazanmaktadır. Bu kapsamda, bağımlı ve bağımsız değişken setleri arasındaki yüksek boyutlu ilişkilerin ortaya konulmasını sağlayan MARS (Multivariate Adaptive Regression Splines) algoritması, değişkenlerin dağılımına ilişkin herhangi bir varsayıma ihtiyaç duymamaktadır. Nonparametrik regresyon yöntemi olarak da bilinen MARS algoritması, araştırıcıların tahmin denklemi oluşturmasına imkan sağlamaktadır. Bu üstün özelliklerinden dolayı, etki faktörü (impact factor) yüksek olan SCI kapsamındaki mühendislik dergilerinde MARS algoritmasının yoğun olarak kullanıldığı görülmektedir. Ancak, tarım bilimleri literatüründe MARS algoritmasının uygulanmasına yönelik bilgiler kısıtlıdır.

MARS çözümlemesinde R yazılımında “earth” paketi kullanılarak MARS komutlarının oluşturulmasına gerek duyulmuştur. Araştırmacı odaklı olarak tasarlanan “Application of Multivariate Adaptive Regression Splines in Agricultural Sciences through R Software” isimli bu R kitabı ile; (1) MARS algoritmasına ilişkin teorik bilgilerin kavranması, (2) MARS algoritmasının tahmin performansını ölçmeye yarayan uyum iyiliği ölçütlerine ilişkin teorik bilgilerin verilmesi, (3) MARS çözümlemesi bakımından “earth” paketinini etkin bir şekilde kullanılması, (4) Daha az terimli MARS tahmin denklemi edilmesi ile ilgili bazı püf noktaların verilmesi, (5) MARS algoritmasının tahmin performasını ölçmeye yarayan uyum iyiliği ölçütlerinin R yazılımı ile hesaplanması, (6) Bir ya da birden fazla sürekli bağımlı değişkenin tahmin edilmesi kapsamında MARS algoritmasının etkin bir şekilde kullanılması ve elde edilen çıktıların kolayca yorumlanması amaçlanmıştır. Regresyon problemlerinin çözümlenmesi amacıyla yazılan bu kitabın, başta tarım bilimlerindeki araştırıcılar olmak üzere mühendislik, tıp, ekonomi ve diğer bilim alanlarındaki araştırıcılara faydalı olması ümit edilmektedir.


ISBN: 9786052149812

Baskı Sayısı: 1. Baskı

Basım Tarihi: Mart 2019
Sayfa Sayısı: 112

Ebat: 13,5x19,5


Bu eseri oylarak yorumlayabilirsiniz. Lütfen yorumlarınızın bilgi verici, açıklayıcı ve adil olmasına dikkat ediniz.
Oyunuz
Adınız ve Soyadınız
Eposta
Yorumunuz

BU KATEGORİDE EN ÇOK SATAN ÜRÜNLER

1
Çağdaş Eğitim Denetimi
1120 adet satıldı
24,75

2
Genel Muhasebe
579 adet satıldı
45,90

3
İşletme Bilimine Giriş
64 adet satıldı
29,70

4
Temel İnşaatı
28 adet satıldı
31,50

5
Maliyet Muhasebesi
19 adet satıldı
45,90

6
Yarı Mikro Kalitatif Analiz
14 adet satıldı
31,50

7
Genel Ekonomi
6 adet satıldı
36,00

8
Ağaç İşleri Teknik Resmi

9
Ticari İşletme Hukuku
1 adet satıldı
18,00

10
İcra Ve İflas Hukuku
1 adet satıldı
23,40